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Artificial Intelligence can seem overwhelming, given the pace of the advancement and the 
complexity of the methods used. We at AI-for-Education.org believe that while how AI works 
is complex, the core principles of AI should be accessible to all – especially for those who 
are using these tools to help children learn. 

To help, we’ve developed this introduction to AI – which walks you through the main 
definitions, main techniques, and the history of how we got where we are today. It’s as non-
technical as possible in this field – but an important read for all of you who will build or use 
AI tools in the future.



INTRODUCTION 
TO AI

1. Artificial Intelligence: 
Definitions
To begin, we introduce some key terms, and how they 
relate to each other. We will expand on the definition 
of these concepts in the next section.

ARTIFICIAL INTELLIGENCE (AI) is a broad discipline 
which aims to build computational systems that can 
perform complex tasks which typically require human 
cognition. This includes things like understanding 
languages, recognising pictures or patterns, solving 
problems, predicting the future (forecasting), or 
driving a car. 

MACHINE LEARNING (ML) is a subset of AI. Machine 
Learning involves algorithms which learn from data. 
Most current AI is based on the machine learning 
framework.  

DEEP LEARNING is a subset of ML which uses a 
particular class of algorithm: artificial neural networks. 

GENERATIVE AI refers to ML models that can produce 
new content: for example, images or text. Most 
Generative AI is based on Deep Learning models. 

Figure 1: Definition and relationship of key terms.

1



Artificial General Intelligence (AGI). AGI refers to system capable of flexible problem solving, 
beyond the capabilities of a typical human across a wide range of tasks. The exact point at which 
a system should be considered AGI is very much debated, but several tests have been proposed 
to identify this. As historically developed tests have been passed: beating a grandmaster at chess 
(IBM’s Deep Blue, 1997), beating humans at the more computationally challenging game of Go 
(DeepMind’s AlphaGo, 2015), passing the Turing test (Eugene Goostman, 2014), new tests are 
proposed. The current consensus is that while progress is accelerating, current systems should 
not yet be considered human-level AGI. Further discussion of AGI is beyond the scope of this 
introduction, but it is a useful term to keep in mind. 
 
Several tests have been proposed to demonstrate human-level AGI.  
 
The Turing Test 
 A machine and a human both converse unseen with a second human, who must evaluate which 
of the two is the machine, which passes the test if it can fool the evaluator a significant fraction of 
the time. The Turing test was first passed in 2014, by a chatbot AI called Eugene Goostman.  
 
The Robot College Student Test 
A machine enrols in a university, taking and passing the same classes that humans would, and 
obtaining a degree. LLMs can now pass university degree-level exams without even attending the 
classes. 
 
The Employment Test 
A machine performs an economically important job at least as well as humans in the same job. 
AIs are now replacing humans in many roles as varied as fast food and marketing. 
 
The Ikea Test 
Also known as the Flat Pack Furniture Test. An AI views the parts and instructions of an Ikea flat-
pack product, then controls a robot to assemble the furniture correctly. 
 
The Coffee Test 
A machine is required to enter an average American home and figure out how to make coffee: 
find the coffee machine, find the coffee, add water, find a mug, and brew the coffee by pushing 
the proper buttons. 

Reproduced from https://en.wikipedia.org/wiki/Artificial_general_intelligence
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2. Machine Learning

Machine Learning (ML) refers to a family of algorithms 
which learn from data. There are three main families 
of ML problems: reinforcement learning, supervised 
learning, and unsupervised learning. 

2.1 TYPES OF MACHINE LEARNING

REINFORCEMENT LEARNING is a type of ML which 
models an agent learning by trial and error. The agent 
uses an algorithm to choose which action to take, 
based on current observations of the environment. 
The chosen actions have consequences, and the RL 
model learns how to select their actions to maximize 
some metric, called the reward. This might be points in 
a game, or some other measure of how well the agent 
is doing. The algorithm tries to find the optimum 
trade-off between exploring (i.e. trying new actions) vs 
exploiting actions that are known to do well. It is 
important to keep in mind the particular reward that 
the agent is optimising. If the reward is not well 
calibrated to the behaviours researchers are looking 
for, this can lead to the agent taking unexpected short 
cuts, or behaving in a way that was not intended. For 
example, when RL agents are applied to computer 
games, they can often find glitches or bugs in the 
game which they exploit to get a better score. 

coursework and assessments would be a regression 
problem. For both types of supervised learning, the 
model is trained with example data items paired with 
the desired output for each: i.e. a large set of 
photographs together with labels with tell whether a 
face is present or not. In supervised learning, the 
supervision comes from the labelled training data set, 
which tells the model what to do, by setting the 
parameters. As we will see, the training data has a 
huge influence on the behaviour of a model, so it is 
important to understand this step.

SUPERVISED LEARNING is about learning a mapping, 
between examples of data and some associated 
outcome or property. For example, for the problem of 
face detection, the data points are individual 
photographs, and the output is a label with two 
values: a yes or no answer to the question “is there a 
face in this picture?”. If the outcome has discrete 
values like this face detection example, the problem is 
called classification. In the outcome is a continuous 
value then it is called regression. For example, 
predicting a student’s final mark based on earlier 

Figure 2: Definition and 
relationship of key terms.

UNSUPERVISED LEARNING is about learning 
something about the structure of a large dataset, 
without any explicit labels or output values to predict. 
Two major sub-classes of unsupervised learning are 
dimensionality reduction and clustering. Dimensionality 
reduction is about describing a high-dimensional data 
set in a simpler way. For example, representing each 
data point with just a few numbers rather than 
hundreds of thousands, in a way that preserves as 
much of the important structure, such as the 
relationships between different data points, as 
possible. Clustering is about grouping objects (for 
example photographs) in such a way that objects 
within a group (or cluster) are more similar to each 
other than they are to items in other groups. 
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This section unpacks the important parts of a ML model 

from the supervised or unsupervised learning families. 

Reinforcement learning algorithms work in a slightly 

different framework which we won’t cover here.

A machine learning model consists of an algorithm, 
together with some parameters. The algorithm 
consists of a series of computational steps or 
instructions on how to manipulate the incoming data 
to achieve the chosen task. The parameters are values 
that are used by the algorithm at different stages (for 
example, an algorithmic step might say to multiply the 
input data by a scaling factor, where the particular 
value of the scaling factor is a parameter learned from 
the data during training). In ML applications, the 
algorithm is usually fixed while the parameters are 
learned from the data in a process called training 
(black arrow in Figure 3). It is important to understand 
that the performance of a model is function of both 
the algorithm and the parameters, and the 
parameters come from the data used during training. 
  
Usually, an ML model is developed so that it can be 
applied to new data. If model performance (i.e. for the 
face detection classifier, the proportion of correct 
answers, called the accuracy) is evaluated on the 
training data it is usually much higher than the 

performance would be on new data. Because it is 
being asked about a photograph it has already seen in 
training, it can know the correct answer for this 
specific example directly, for example by memorising 
every photo in the training set, without having learned 
a general process to solve the task (i.e. recognising 
faces). The ability of a model to work successfully on 
new data is called generalisation. We want models that 
generalise to new data, and not models that just 
memorise the training data. The phenomena where 
models perform much better when evaluated on their 
training data is called over-fitting. To meaningfully 
evaluate model performance, it is very important that 
the data used to test performance is completely 
separate from the data used to train the model. When 
new data is not immediately available this is achieved 
with techniques like cross-validation. In cross-
validation, the available data is randomly split into two 
parts, one part is used to train the model and the 
second part is used to test the model. This allows 
researchers to approximate the performance of the 
model on new data.

Figure 3: A machine learning 
model consists of an algorithm, 
together with some parameters. 
The parameters are learned from 
the training data. To test the ability 
of the model to generalise it must 
be applied to new data, that wasn’t 
used for training. 

2.2 WHAT IS A ML MODEL

Deep learning refers to a particular family of machine 
learning algorithms, mostly developed for supervised 
learning problems. Deep learning models are multi-

layer artificial neural networks. We will explain now 
what each of these terms means. 
 
An artificial neural network (ANN) is a computer 
system which is loosely inspired by biological nervous 
systems. An ANN consists of many simple 
computational units, called neurons, each of which 
has several inputs and a single output. Each neuron 
performs its own independent and relatively simple 
computation: it adds up the inputs in a certain way 
and uses the result to set its own output. Before 
adding up the inputs it multiplies each of them with a 

2.3 DEEP LEARNING
weight, these weights are the parameters of the 
algorithm which are learned from the data. The 
pattern of how units are connected is called the 
architecture of the network. Mostly by trial and error, 
researchers have found that architectures which 
involve multiple “layers” of units are the most 
effective. There are different types of layers with 
different structures that can be stacked together in  
various combinations to build an effective ANN. We 
will see some examples of this in the next sections. 
 
Usually, once the architecture is decided the 
performance of the network depends heavily on the 
parameters: the weights which each neuron uses 
when adding up its inputs. These parameters are 
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learned from data in the training step. This is done 
with a technique called back-propagation. To start with, 
random numbers are used for each weight. Then each 
training example is run through the network, and the 
final network output is compared to the desired true 
value from the labelled training data set. The 
difference between the true value and the network 
prediction is called the error. Starting from the output, 
the weights are then updated a small amount in a way 
that reduces the error in the output for that example. 
This is then repeated many times. Each training 
example leads to only a tiny change in the weights of 
the network, but over many repetitions of this process 
the changes build up. Often the error is visualised 
over the course of training, to understand more about 
the process. But crucially, the generalisation 
performance, which must be evaluated on separate 
data not used for training, is more important than the 
final error on the training examples. 
 
Although each unit is relatively simple – taking 
multiple inputs and processing them with a simple 
function to obtain a single output – by combining 

these in huge numbers the resulting networks are 
very powerful. They also have very large numbers of 
parameters (there are many more connections 
between neurons than there are neurons, and each 
connection has a weight parameter). For example, as 
we will see below, Large Language Models (LLMs) are 
often characterised and described in terms of the 
number of parameters they have, which is measured 
in the billions, tens of billions or even hundreds of 
billions. To give a sense of scale, 100 billion seconds 
(roughly the number of parameters in OpenAI’s 
ChatGPT) corresponds to 3000 years. Learning these 
parameters requires huge amounts of training data 
and is very computationally intensive. The key word 
here is scale. While the theory of ANNs was first 
developed in 1950s and 60s, it is the increased scale 
provided by technological developments in the 21st 
century that has unlocked successful practical 
applications. This is both because of the increasing 
speed of computers, but also the cost and availability 
of digital storage, and crucially the availability of huge 
quantities of data in digital form (for example digitised 
text from books, and images from digital cameras).
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Figure 4: Artificial Neural Networks consist of many interconnected units or neurons, arranged in layers. A: Each neuron has many 
inputs from neurons in an earlier layer. These inputs are summed with the learned weights (indicated by lines of different thickness) 
and the sum is passed through a non-linear activation function to compute a single output value which is sent on to other neurons. 
B: Neurons are often arranged in layers, with different stereotyped structures. Here, two fully connected layers are shown. Fully 
connected means every neuron in layer 1 has a connection from every input, and every neuron in layer 2 has a connection from every 
neuron in layer 1. The connections of the first neuron in layer 1 are highlighted. C: A deep learning model typically consists of multiple 
layers stacked together. This panel shows the architecture of AlexNet, a network with 8 layers containing 650,000 neurons in total. It 
has 62 million learnable parameters (weights). AlexNet was winner, by some margin, of the 2012 ImageNet competition, which 
kickstarted a resurgence of interest in deep learning methods (see Section 3.2.2). Panel C modified from Hemmer et al. (2018) 
doi:10.3390/designs2040056
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As we have seen, Deep Networks consist of huge numbers of relatively simple computational 
building blocks. This means, the output for each neuron can be computed somewhat 
independently of the others. Computer games, which render the visual image of a 3D scene in a 
game as the player moves around the game world, also have this form of parallel computational 
problem. For games, the appearance of each pixel on the screen can be calculated somewhat 
independently of the other pixels. 
 
Driven by the increasing market for computer games, specialist hardware was developed to 
improve performance for these tasks, by companies like NVidia and AMD. Since these were 
developed for computer game graphics, they were called Graphics Processing Units or GPUs. 
However, because they are designed to run many simple calculations in parallel, they are also 
very efficient for training and running deep learning networks. 
 
The rapid growth of machine learning and the popularity of deep networks caused huge demand 
for these devices, and suppliers could not keep up. Cryptocurrencies are another area that also 
provides strong demand for GPUs, as they can also perform the computational work needed to 
operate blockchains in an efficient way. This led to increase in prices and disruption to supply 
chains and meant many gamers were unable to keep up with the latest technology. 
 
To address this and support their original core customers, some manufacturers sell different 
versions of their GPUs, trying to reduce how attractive they are for different areas. For example, 
some cards automatically slow down if they detect a lot of crypto-currency calculations, other 
cards have strict licensing terms forbidding their use in computational workstations without a 
display attached (so they can only be used for playing video games on a display and not for deep 
learning in a computer cluster). 
 
These shortages have implications for those of us building for more charitable use cases where 
the commercial returns may not be as lucrative.
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Deep learning models are often termed a black box. This is because it is very difficult to look 
inside them and understand how they work. This might sound strange when they are 
implemented in a computer, and we know every multiplication and addition that is performed.  
 
But the enormous scale means this does not really help us understand what is going on. It is 
difficult to describe the computational steps in a way that gives understanding of what specific 
features of the input data are leading to the decision, and in what way. This can lead to bias or 
side-effects, when the model learns to perform the task in ways that are not expected. 
 
One example of this is a deep learning model that was trained to identify pictures of horses. 
Because of a quirk of the training data set, most of the photos of horses were commercial 
pictures from horse riding events which carried watermarks. Photos of other categories in this 
data set tended not to have this. So, the network had not actually learned about horses as we 
recognise them, but instead was using an unexpected feature of the photographs that humans 
would typically ignore. 

Explainable AI (XAI) is a subfield of AI in which researchers are trying to better characterise and 
understand how Deep Learning, and other AI models work. This considers not just accuracy, but 
also fairness. For example, when AI systems are making decisions with important real-life 
consequences it is important to understand how they work to ensure they are acting in an 
acceptable way. A system used in parole hearings to predict reoffending should not be making 
decisions based on any protected characteristics, such as race. 

EXPLAINABLE AI

Images used as input for a model trained to detect horses, next to the corresponding relevance map which shows 
which parts of the image were most strongly influencing the models’ responses. 
 
A shows an image containing a copyright watermark, causing a strong response in the model. In B, the watermark 
has been edited out. The artificially created images C and D show a sports car on a lush green meadow with and 
without an added copyright watermark. In samples A and C the presence of class “horse” is detected, whereas in 
samples B and D this is not the case.
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3. A brief history: from 
simple tasks to generative 
AI

As deep learning models became larger and more 
powerful, they developed detailed internal 
representations of the type of data they were trained 
on. This means they can be used to generate new 
examples of that type of data. For example, creating 
images from scratch (e.g. text to image), or producing 
long segments of meaningful text to answer questions 
(e.g. chatbot assistants). The development of 
generative AI technologies has been particularly rapid 
in recent years. A key turning point for these systems 
was when the outputs started to become difficult to 
identify as AI generated. Today, it is not easy (and 
sometimes impossible) to recognise that outputs of a 
generative AI system are not real photographs taken 
by, digital art composed by, or text written by humans. 
Because the results are available for everyone to see 
and are relatively easy to interpret (compared to 
numerical measures like classification accuracy 
scores), generative AI has boosted excitement about 
and interest in the field. 
 
In this section we will illustrate the historical 
development of these capabilities with some selective 
examples. Just as the parameters and the behaviour 
of AI models are closely tied to the datasets that they 
were trained on, so the history of AI progress can be 
traced through the development of certain landmark 
datasets for specific problems. Because of this link 
between model, training data and performance, 
shared data sets provided an important way for 
researchers working in the field to objectively 
compare different approaches – an open data set 
described a difficult but constrained problem. 
Organised competitions (with private test data 
withheld by the organisers to prevent cheating) 
allowed different groups to test their ideas, and this 
allowed the field to rapidly discover the most 
promising approaches. By reviewing some of these 
key landmark datasets and the developments they 
enabled, we aim to give a historical overview of the 
development of modern generative AI systems, 
focusing on the domains of images and language. As 
well as showing the history of the development of the 
algorithmic techniques, these datasets also show how 
the problems tackled changed from well-defined 
classification tasks (e.g. recognising hand-written 

digits), to modern open-ended generative AI (e.g. 
image generation). This is intended to be a high-level 
historical introduction rather than a comprehensive or 
complete history. For more detailed and 
comprehensive materials, see Resources. 

1994 
MNIST 
 
1995 
LeNet-5; 2010: ImageNet competition 
launched 
 
1997 
Deep Blue beats grandmaster at chess 
 
2012 
AlexNet wins ImageNet 
 
2013 
Google Word2Vec 
 
2014 
A chatbot called Eugene Goostman 
passes the Turing test 
 
2015 
Style transfer 
 
2015 
Image captioning (Stanford) 
 
2015 
AlphaGo beats master 
 
June 2017 
Transformer architecture paper from 
Google 
 
Jan 2021 
Dall-E 1 
 
July 2022 
Midjourney beta release 
 
Nov 2022 
ChatGPT released 
 
Feb 2023 
Llama-2 released

1994

2O24 Figure 5: Timeline of AI 
developments discussed here.
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3.2.1  MNIST: RECOGNISING HANDWRITTEN DIGITS

Long before he became the head of AI research at 
Meta (formerly Facebook), Yann LeCun was working at 
NYU when, in 1994, he was part of a team that created 
one of the most influential datasets in the history of 
machine learning. The problem he was working on 
was identifying hand-written numerical digits, a subset 
of optical character recognition (OCR). This is an 
example of the kind of task that is easy for people to 
do (in most cases!) but was hard to program 
computers to do with a fixed set of rules, because of 
the range of different handwriting styles. 
 
The MNIST dataset consists of 70,000 images of 
handwritten numbers (60,000 for training and 10,000 
for testing). Each of these images has been labelled by 
humans annotating the digit displayed. While this was 
an interesting theoretical problem because of the 
constrained nature of the data (only 10 output 
classes), it was also an important practical problem for 
the automated sorting of mail. In the US postal 
system, every address has a numeric postal code.  
 
Being able to automatically read the 5-digit 
handwritten postal code would allow machines to 
automatically sort mail, even if they couldn’t read the 
rest of a handwritten address. Another application of 
digit recognition is automatic processing of 
handwritten cheques (widely used before the advent 
of credit cards and bank transfers). 

Today this is considered a relatively simple problem, 
which is often used as a tutorial exercise. Models can 
be trained to achieve excellent performance on this 
dataset with a modern laptop computer, with only a 
few lines of code using open-source deep learning 
software libraries. However, in the 1990’s it provided a 
ground-breaking benchmark problem, pushing the 
limits of the computational resources of the time. 
 
It was one of the first examples where multi-layer 
neural networks (aka Deep Learning) achieved state of 
the art performance. In 1995 Yann LeCun developed a 
model called LeNet-5. The performance of this model 
on the MNIST classification problem surpassed all 
other computer vision models of the time. LeNet-5 
consisted of 7 layers. The first five layers alternated 
between convolution layers, which look for a fixed 
pattern anywhere in the image, and pooling layers, 
which combine the outputs of the previous layer in 
different parts of the image. 
 
After this there was a dense or fully-connected layer. 
While convolution and pooling layers impose a 
particular structure in the form of which units are 
connected, in a dense layer every neuron is connected 
to every neuron in the layer before and in the layer 
after. This pattern of alternation of convolution and 
pooling, followed by dense connection was highly 
influential, and became a key motif that was widely 
used in many deep learning computer vision models 
(see Figure 7, AlexNet which we introduce next).

Figure 6: Example images from the MNIST dataset. While 
these figures are easy for us to read, the natural variations 
in handwriting make it a difficult task for a rules-based 
computer vision system. 
 
Source: https://en.wikipedia.org/wiki/MNIST_database
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convolution and pooling layers, finished with dense 
interconnected layers (see Figure 4). AlexNet had 
650,000 neurons, with 62 million learnable 
parameters in total. The success of AlexNet 
kickstarted a resurgence of interest in ANNs. Since 
2012, every winner of the ImageNet competition has 
been an ANN model. In 2015 an ANN called ResNet 
with 152 layers won the challenge with an error rate of 
4% - finally beating human performance on this task. 
ResNet-152 has a similar number of parameters as 
AlexNet – around 60 million – but requires 
approximately 10 times more computer time to train. 
  
ImageNet, like MNIST, defines a supervised 
classification problem. However, while MNIST had just 
10 possible output classes, with ImageNet that 
increased to 1000 possible categories. Another major 
difference between the data sets is the fact that 
ImageNet uses unconstrained natural photos. The 
images are not cropped and centred on the object of 
interest, and there can be multiple objects in each 
image (two boats, or a dog and a fish, in the examples 
shown in Figure 7). This seems like a trivial extension 
for humans doing the task, but presents real 
challenges for computer vision. The human visual 
system is well known to be robust to the sorts of 
natural variations we experience every day in aspects 
like brightness, lighting (morning vs evening), location 
of an object, and so on. For computer vision systems, 
which need to follow the fixed set of steps from an 
algorithm to get the answer from a given image, 
dealing with these variations is much more 
challenging.  
 
Although the foundational ideas for the field of deep 
learning were proposed in the 1960s, the lack of early 
practical successes led to them falling out of favour. 
By the ‘90s only a few groups of researchers were 
working in the area, which was considered a niche 
theoretical topic. However, with the increasing 
availability of compute power and digital data from 
the turn of the century, deep learning went from 
strength to strength and is now the basis of most 
current generative AI. The dominance of AlexNet in 
2012 can be seen as something of a turning point, 
which led to renewed interest in the deep learning 
approach, which was then widely adopted for many 
applications. In fact, after 2012 deep learning models 
quickly surpassed existing state-of-the-art approaches 
in a wide range of problems, for computer vision 
(image segmentation, self-driving cars), speech (e.g. 
automatic speech recognition), and as we will see 
next, language. 

Figure 7: Example images for two different labels. These 
natural images have a broad range of variation in position, 
lighting and the specific example (i.e. different breeds of 
dog) compared to the more constrained digit images in 
MNIST. Example images are shown here for two categories, 
but ImageNet features over 20,000 categories in total.  

3.2.2 IMAGENET: RECOGNISING OBJECTS

SAILBOAT DOG

Models trained on the MNIST dataset hinted at the 
growing superiority of multi-layer ANNs for computer 
vision, but it was a second landmark dataset released 
15 years later in 2010 that accelerated this new 
paradigm – the ImageNet dataset. ImageNet was a 
project to map (again, with human labour) thousands 
of words to millions of images found on the internet. 
By combining these two aspects of human cognition – 
language and vision – at such a large scale, ImageNet 
was able to push AI research in a direction that was 
not previously possible. In 2010 a competition was 
launched to find the best model for categorising 
objects from images. The competition dataset 
included 1.3 million training images of objects from 
1000 categories. This was a challenging task, even for 
humans, due to the diversity of images and 
categories. Humans have an error of around 5% (out 
of every 100 images they get around 5 wrong). Until 
2012 the best performing models had error rates 
between 25 and 30%, some way below human 
performance. In 2012 a new model provided a step-
change improvement, reducing the error rate to 
around 15%, nearly 10% better than the next model. 
This model was called AlexNet, developed by Alex 
Krizhevsky, a PhD student working with Geoff Hinton 
at the University of Toronto. AlexNet is a deep 
convolutional neural network, with a similar design to 
LeNet-5 described above, but with 8 layers rather than 
7. While each layer was much larger (had more 
neurons), the model used the same motif of interlaced 
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documents or sections of text. The basic idea of these 
approaches is to consider each n-gram separately, and 
just count the number of times it occurs in a 
document, ignoring anything about where in the 
document occurs, or that it tends to be next to, before 
or after. When applied to 1-grams, such approaches 
are known as “bag-of-words” models (so-named 
because they do not capture any information about 
the order of words in the text, instead they are like 
throwing all the words from a document into a bag 
and shaking it up). These sorts of models could be 
used for tasks like sentiment analysis (counting how 
many positive words vs negative words were in a 
document), or topic modelling (finding common 
themes based on combinations of words that tend to 
appear together over a set of documents). 
 
Mirroring the development of image models, multi-
layer ANNs made for rapid advances in natural 
language processing, particularly through the 
possibility for distributed representations of words. 
Instead of each word or token being assigned a single 
numerical probability as in the bag-of-words models, 
ANNs like Google’s Word2Vec in 2013 introduced 
models that map each individual word or token onto 
thousands of different numerical values, or vectors. 
These vectors, also known as word embeddings (or 
token embeddings if the input tokens are not whole 
words), served as a kind of “fingerprint” for each word, 
but more importantly they also displayed certain 
intuitive behaviour when combined, which showed 
they quantified something about what the words 
mean. For example, the vector for the word ‘Paris’ 
minus the vector for the word ‘France’ plus the vector 
for the word ‘Italy’ gives the vector for the word 
‘Rome’. That is, they represent something meaningful 
about the semantics of words.

3.3 EARLY LANGUAGE METHODS

It’s hard to pin-point exactly when people first had the 
idea of using machines to understand and produce 
natural language, but some of the most important 
early advances relevant to modern AI came from 
researchers and engineers working on telephone 
communication in the 1950s, in particular the work of 
Claude Shannon at Bell Labs. Shannon’s idea was that 
an expression in a language could be understood as a 
chain of symbols, also known as tokens, taken from a 
fixed set, or vocabulary, which each have a certain 
chance of appearing at each point in the chain, 
depending on the tokens which appeared before 
them. A token could be a single letter, a whole word, 
or something in between. 
 
At that time, and up until very recently, it was not 
possible to accurately calculate the probability of 
tokens appearing in sequences long enough to be 
useful for understanding human communication (e.g. 
whole sentences). Approaches based on this principle 
focused on smaller chains of tokens, known as n-
grams. A 1-gram is a single token taken in isolation – 
for example if the tokens are words, then a 1-gram 
count is simply a count of the number of times each 
word appears in a piece of text. A 2-gram, or bi-gram, 
is a pair of tokens appearing next to each other in a 
chain – for example “hello there” and “car wash” are 
possible word 2-grams that might appear in an English 
text. 
 
Because they were limited to short chains of tokens, 
approaches that used these ideas were not capable of 
understanding or producing text in the way that 
humans can. They focused instead on simpler tasks, 
such as classifying or extracting the general theme of 

Figure 8: Schematic showing word embeddings for the words ‘king’, ’queen’,’ man’ and ‘woman’. Note that the 
relationship (i.e. the difference) between ‘king’ and ‘queen’ is similar (same length and same direction) as the 

difference between ‘man’ and ‘woman’ (red arrows). So ‘king’ + ‘woman’ – ‘man’ = ‘queen’. The representation captures 
that the relationship between king:man is the same as the relationship between queen:woman. Only two dimensions 

are shown here in this cartoon schematic. Typical word2vec embeddings have hundreds of dimensions.  
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Here, we continue our brief history with examples of 
models that make the leap from supervised learning 
towards modern generative AI, as you will see from 
the open-ended output of the models. As we get to 
the more recent impressive applications of generative 
AI, the distinction between text and image data and 
models becomes blurred, as modern generative-AI 
models span these domains. Generative AI involves 
the development of such large models that they 
contain representations of a huge range of concepts 
we observe in the world. To make sense of this, the 
most advanced image models also use models and 
representations built from text, and the latest 
generation of large-language-models are inherently 
multimodal, able to process images as part of their 
input prompts, and produce images alongside text in 
their outputs.

In the previous section we considered early 
developments in the domains of images and language 
separately. For images, we saw how benchmark 
datasets expanded from the constrained and relatively 
well-defined problem of digit recognition with MNIST, 
to the more difficult and larger-scale problem of 
recognising everyday objects in natural scenes. NLP 
methods were also historically developed separately 
from the relatively specific field of computer vision. 
They developed from simple sentiment analysis based 
on bag-of-words (i.e. how many negative vs positive 
words are in a document), to capture meaningful 
semantic relationships in high-dimensional word 
embeddings like word2vec.

3.4.1  STYLE TRANSFER: IMAGES AS INPUTS, 

IMAGES AS OUTPUT

One of the earliest examples of generative AI for 
images which gained wide attention is what was 
termed “style transfer”. By manipulating the 
activations of different layers of the network to two 
different images, researchers were able to create an 
output that combined them in a particular way. The 
subject or content of the output image came from one 
image, but the style (for example, the characteristic 
style of van Gogh’s oil paintings) came from the other. 
Contrast this with the ImageNet labelling task. 
Reporting the objects in each image is a simpler 
output, with a clear correct answer. 
 
In style transfer, a new image is produced as the 
combination of a content image and a style image. 
The output is a new image, without a correct answer. 
There are many possible ways to recreate the first 
content image with the style of the second, and the 
evaluation of which might be better is a subjective 
judgement. This illustrates the transition to generative 
AI. The evaluation of style transfer images is 
subjective, and the output is something that it is not 
easy to recognise as “computer generated”.
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Figure 9: Examples of Style Transfer. Panel A shows the source 
image: a photograph of a river scene. Panels B-F show the 
results of style transfer for different donor style images (inset). 
Reproduced from Gatys, Ecker & Bethge (2015) “A Neural 
Algorithm of Artistic Style” 
https://arxiv.org/abs/1508.06576 



We have seen how ImageNet provided a dataset for 
evaluating visual object categorisation. This was 
extended to the more open-ended problem of image 
captioning. This goes beyond identifying the category 
of a single object in a photograph, and instead 
involves generating a semantic description of what is 
happening in the scene. This is another example of 
the shift to generative AI. While style-transfer 
produces new images as output, here we have written 
sentences as the output. Unlike the predefined 
categories of ImageNet, the output now is a full 
sentence, which can include any words in any 
combination to describe the image. In 2015 a 
landmark deep network model developed at Stanford 
by Fei-Fei Li, achieved another step-change in 
performance compared to previous efforts. 
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Figure 10: Examples of image captioning. Reproduced from Karpathy & Fei-Fei 
(2015) “Deep Visual-Semantic Alignments for Generating Image Descriptions” 

https://cs.stanford.edu/people/karpathy/deepimagesent/ 



Current systems allow generation of full, photo-
realistic images from text prompts. Systems providing 
this functionality include DALL-E, Midjourney and 
Adobe Firefly.
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“Simple flat vector illustration of a woman sitting 
at the desk with her laptop with a puppy, 

isolated on white background”

“An aerial drone shot of the breathtaking 
landscape of the Bora Bora islands, with 

sparkling waters under the sun” 

This allows the creation of fantastical images (for 
example, a snake made of corn, a cat riding a horse) 
which are impressively realistic. These systems have 
an encyclopaedic knowledge of the visual world and 
can produce realistic images of a huge range of 
concepts, in any visual style (photo-realistic, 
illustration, manga, line drawing, woodcut print etc.). 

“A bedroom with large windows and modern 
furniture, grey and gold, luxurious, mid century 

modern style”

“A macro wildlife photo of a green frog in a 
rainforest pond, highly detailed, eye-level shot” 

Figure 11: Example images generated from four different commercial models using the same 
prompt. The four models use for each example are: Meta AI, Adobe Firefly, Midjourney and OpenAI’s 

DALL-E. Images generated by Chase Lean https://twitter.com/chaseleantj



3.4.4 AI ART: COMBINING IMAGE AND 

PROMPTS AS INPUT

There are image models that allow image generation 
with a text prompt, while also being constrained by an 
input image. This works best when the input image is 
high contrast (e.g. a black and white checkerboard). 
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Figure 12: An example of “AI Art”. These images were generated from a black and white image 
(checkerboard or spiral) together with the prompt “Medieval village scene with busy streets and 

castle in the distance”. Images generated by https://twitter.com/MrUgleh/



4. Large-Language-Models 
(LLMs)
An important class of model, called Large Language 
Models (LLMs) supercharged methods for language in 
recent years. This is the type of model behind chatbot 
AI assistants, like the famous ChatGPT from OpenAI. 
 
The step-change in the ability of these models 
interpret and produce naturalistic language compared 
to what went before has driven much of the current AI 
excitement. Because of the importance of these types 
of models, here we provide a bit more detail about 
them. We aim to provide a high-level overview of the 
main stages involved in developing the models, and 
how they can be refined for different tasks. 
 
A large language model (LLM) is a deep learning 
model. They were initially developed to work with text, 
although this boundary is dissolving as the latest 
models are genuinely multimodal, trained on both text 
and images. Here we focus on text based LLMs. As 
described above for supervised learning models, first 
an LLM must be trained, and following that it can be 
used. For LLMs the training process is composed of 
several stages, which we outline below. Each of these 
stages adjust the learnable parameters of the model. 

16

4.1 INFERENCE

To use an LLM to generate text requires two 
components, the set of learned weights (measured in 
billions of parameters, usually 10’s or 100’s of billions), 
and some code which implements the architecture of 
the model to apply the weights to input data. In this 
case, because the outputs are so open ended, the 
input data are called prompts because of the way they 
invite the model to respond. Inference requires both 
high computational performance (i.e. GPUs) but also a 
lot of memory to hold the billions of weights of the 
model. Currently GPUs available with large amounts 
of memory to support LLM inference remain very 
expensive. There is also limited available because of 
high demand leading to a very competitive market 
with long wait times. The cost and availability of high-
end GPUs is the main barrier to developing a new 
LLM. 

Once trained, applying a model to generate text is 
called inference. This is analogous to the testing step in 
supervising learning. In a classification model, the 
testing step would typically involve evaluating the 
performance of the classifier on new data. Here as the 
task of generating new text is open ended, so as with 
the image generation models like style transfer, there 
is no single right answer.

Most inference is performed online in data centres (often termed the cloud) as a commercial  
service. In this case, the model architecture and the values of the weights can be kept private.  
Providers such as OpenAI and Midjourney work in this way. For example, users can pay a monthly  
subscription to OpenAI to access ChatGPT, or software developers can programmatically access  
these services from their own applications or websites, paying a small fee for each prompt sent.  
These are usually charged per-token, both for the prompt provided and the response generated.  
 
However, there is also increasing interest in the ability to run inference on self-owned computer  
hardware – this is called local models or local LLMs, because the models are run close to the user  
(i.e. on their own computer), rather than further away from them (in the cloud). As described  
above, to run inference for a model requires access to the weights, as well as computer code to  
implement the architecture of the model. Some companies, such as Meta and French start-up  
Mistral, release these weights publicly for anyone to use. These models are called open models.  
However, even for open models typically neither access to the training data or full details of the  
training process are provided, and sometimes the weights are licensed in a way that restricts  
commercial use of the model.

OPEN VS CLOSED LLMS



The process of training a LLM is much more involved 
and computationally intensive than applying the 
model for inference. Here we outline the basic steps. It 
is useful to know these key stages to understand how 
models can be adapted to specific applications and 
contexts. 
 
Current LLMs are based on an architecture called 
transformers. As with the word embedding models 
described earlier, this first involves calculating a high-
dimensional numerical representation of each word or 
token, based on the words it occurs near to in the 
training corpus. However, in contrast to earlier word 
embedding models like word2vec, transformer 
models process a whole sequence of tokens at the 
same time: whether that is a sentence or even a 
longer paragraph. A key feature of this architecture is 
attention. This is a mechanism which adaptively selects 
the other words in the sequence that are likely to be 
most related to the currently considered token. This 
helps them to disambiguate semantic differences 
based on the context given by the sentence or 
paragraph, just as human readers do. There are three 
main steps involved in training a LLM as a chatbot 
assistant. 
 
FOUNDATION MODELS: PRE-TRAINING 
The first step in training an LLM is called pre-training. 
In fact, the P in ChatGPT comes from the term pre-
training: GPT is short for Generative Pre-trained 
Transformer. We have covered what a generative 
model is, and the basics of the transformer 
architecture. Here we describe pre-training, the other 
crucial step. 
 
Pre-training is a training procedure that runs 
iteratively using a huge dataset of text. For example, 
all the text on the internet. This is messy data, not 
curated or systematised in any way, just a huge 
amount of text. The training procedure is like 
supervised learning introduced previously. The 
training objective is to take a sequence of tokens 
(words) from the data set and predict the next token 
in the sequence. This is called self-supervised learning, 
because there are no external labels required (as for 
categorisation). The model can find the ‘correct’ 
answer itself from the data. The model supervises 
itself, hence self-supervised. This training procedure 
runs for a long time, resampling different fragments of 
text from the full training set, each time slightly 
updating the weights to get closer to the correct next 
word. Although this seems simple, it is extremely 
powerful. To predict the next word in a complicated 
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paragraph, requires some representation of the key 
semantic concepts of the paragraph and how they 
relate to each other. In very large models, this simple 
objective can drive meaningful learning of complex 
semantic representations. In effect, this pre-training 
procedure compresses the training data. For Meta’s 
Llama-2 model, which was one of the first widely used 
open LLMs, the pre-training step used around 10TB 
text from the internet. TB denotes a terabyte, which is 
1024 GB. This is compressed by around a factor of 100 
into the 70 billion numerical weights of the largest 
version of the model. This pre-training runs on 
clusters of thousands of GPUs for months, and costs 
millions of dollars. 
 
After pre-training, a raw foundation model has 
learned a lot about the structure of the world 
represented in the training data and can do well at 
predicting sequences of text that look like documents 
from the internet. These generated documents might 
not be real: in effect the model “dreams” internet 
documents, producing documents according to the 
patterns it has learned, producing outputs that mimic 
examples from the training data. Such foundation 
models are not directly useful for end user interaction, 
because the outputs can often be boring, repetitive or 
irrelevant. However, the power of the representations 
they have learned can be harnessed with additional 
training steps. 
 
CUSTOMISING THE MODEL: FINE-TUNING 
To enable the model to answer questions in an 
interpretable and useful way, it is necessary to 
develop an assistant interface, often called a chatbot. 
This is an LLM that can give useful answers to the 
questions it is asked, interacting with the user in a 
productive and understandable way. This is achieved 
by subjecting a foundation model to a second training 
stage, called fine-tuning. Fine-tuning be used to teach 
the model a specific output style, to make a more 
specialised and useful model. 
 
Rather than the huge dump of internet documents 
used in step one, here a completely different training 
set is used. This is much smaller, and highly curated, 
often created from scratch with carefully instructed 
human labour. For example, to create a chatbot, 
human workers write example questions, together 
with well researched and helpful answers. For 
example, the Llama model fine tuning used around 
100,000 carefully curated assistant style question and 
answer pairs. The foundation model is then trained 
again on these documents, so that it learns how to 
produce output primarily in this style: the style of a 
helpful assistant. However, it can still use the semantic 

4.2 TRAINING
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knowledge and representations it learned from the 
internet data. Crucially, fine-tuning is much less 
computationally expensive that pre-training: obtaining 
the carefully curated training data can be the major 
expense in this step. 
 
REINFORCEMENT LEARNING WITH HUMAN 
FEEDBACK (RLHF) 
As noted above, obtaining or creating the carefully 
curated examples needed for fine-tuning can be 
difficult and time consuming, requiring a lot of human 
labour. On the other hand, comparing or ranking two 
answers generated by the model is a more passive 
task that can be done more quickly and easily by 
human raters. In this stage of tuning, multiple 
different answers are generated by the model. The 
models are inherently probabilistic, so when the 
inference procedure is repeated a different answer is 
generated, even if the prompt is the same. In a 
technique called Reinforcement Learning with Human 
Feedback (RLHF), humans rate multiple outputs to a 
given question, and select the best one. This is then 
fed back to update the weights of the model, as for 
the other training stages.

4.3 EXAMPLES

LLMs are instructed with natural language prose 
rather than computer programming code. Their 
behaviour can be tweaked from essay-length prompts 
which try to suggest a particular behaviour, for 
example responding in a certain style and focussing 
on certain topics. This opens a whole new paradigm 
for human computer interaction. The nascent field 
around this is called prompt engineering. Careful use of 
prompting can enhance the abilities of an LLM to solve 
problems. Even relatively simple additions to a prompt 
like “explain your answer step by step”, can enhance 
the problem-solving capabilities of a chatbot.  
 
In-context learning refers to the ability of LLMs to learn 
new tasks or solve problems based just on what is in 
the query context (the context is the combined inputs 
to the model, which can be a combination of the 
query, system prompt and chat history). For example, 
models can learn by example. If the prompt contains 
some examples of a specific task such as summarising 
text in a certain format, extracting dates from a 
paragraph, summarising the sentiment of a series of 
tweets, or some other task, the model can learn from 
this, as a person would. Often just a few examples are 
enough for the model to see how to perform that task 
on new data, and it doesn’t require a full 
computational specification of the task. 
 
Another key area by which the applications of LLMs 
are advancing is through combing a core LLM model 
with other components to form compound AI systems. 
One example of this is tool use, which provides 
additional functionality to a language model through 
functions that the model can call as part of its output. 
For example, OpenAI’s ChatGPT has tools for browsing 
the internet and for executing Python code in an 
interpreter. ChatGPT knows these tools are available

Figure 13: Some example outputs from OpenAI’s ChatGPT.

4.4 EXTENDING AND IMPROVING LLMS
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and how to use them, which greatly enhances the 
types of questions it can answer. If a user asks 
ChatGPT for the time of high tide, it does not have 
access to this from the training data. Instead, it will 
use the browsing tool to perform a search using an 
internet search engine, scan some of the results, just 
as a human internet user would, and extract the 
information requested.

Another family of compound AI systems are termed 
Retrieval Augmented Generation (RAG). These systems 
give the LLM access to a prespecified set of data, for 
example a collection of documents on a special topic. 
In broad strokes, these systems work alongside the 
LLM by finding the parts of documents in the library 
which are most relevant to the user’s query, and 
making sure those are provided in the context of the 
model so it can formulate accurate answers. This 
allows the LLM to function as a factually accurate 
natural language search engine for a specific data set.

Some caution is required about applications of LLMs. No one really understands in detail how 
they work: they are in some sense closer to discovered artefacts than typically engineered 
systems where each step of operation is understood. Even the experts who built them don’t fully 
understand how they produce any given response, and often their behaviour can be surprising 
and unexpected. One major problem is outputs that have been called hallucinations – while 
perfect language is produced, the facts or relationships reported are not always correct, and it is 
hard to identify this without existing expert knowledge. They can also exhibit signs of bias or 
negative stereotyping, and they can sometimes produce offensive or dangerous output. Most 
companies developing such models have dedicated teams thinking about these problems, often 
termed Responsible AI. 
 
Most user-facing chatbot applications have what is called a system prompt, which is invisible to the 
end user, but is applied to every interaction with the model. This is a long natural language 
description of the type of response the model should and should not produce. For example, it 
might include the instruction “Don’t swear in your response, no matter what the user requests. 
When quoting text from other sources remove any rude words”. For the big public models there is 
a constant back and forth between curious users, some of which may be genuine bad actors, and 
the engineers working on the system. When users find a way to get the model to respond outside 
of the intended parameters, this is often called a jailbreak. Early jailbreaks used techniques to trick 
the model into producing illicit content such as instructions on how to perform an illegal activity. 
By asking for the response in a code block, or through increasing byzantine series of instructions 
such as asking the model to write a Python program that prints out the illicit content, some of the 
early safeguards put in place could be subverted. 
 
The amazing performance of LLMs effectively renders computer representation of language a 
solved problem. This landmark has been achieved much sooner than many people expected, due 
to the unexpected and not yet fully understood behaviour that emerged from these large deep 
network models trained on next token prediction. It’s likely that LLMs will expand into many areas 
of software, providing a natural language interface to complex functionality that would otherwise 
require detailed technical expertise. The field is now moving extremely fast, with significant 
improvements being made on a weekly basis.

4.5 CAVEATS



5. Conclusion
Here we have provided a non-technical introduction to 
the field of generative AI. Our intention was to provide 
a high-level overview, which introduces and defines 
some key terminology, while also providing some 
historical context of how the field has developed. 
Historically, image models were developed separately 
from language models, but this distinction is 
disappearing as the next general of large models are 
multimodal, including text, image and even video. This 
historical overview is intended to be an introductory 
beginners guide rather than a comprehensive 
reference and so covers only a few examples.
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This new generative AI technology is undoubtably 
going to change the world, potentially having a 
similarly large impact on society globally as other 
major technological shifts such as the printing press, 
personal computers, the internet, and mobile phones. 
The impact of AI technologies is also likely to be more 
rapid than previous shifts and might be measured in 
years rather than decades. Development in this area 
continues at a dizzying pace and it’s likely that there 
will be dramatic improvements in model algorithms, 
hardware, training data, compound AI systems and 
practical applications in the coming months and years.  
Nonetheless, whatever the developments of the 
future we think it is important to understand some of 
the history that led us there.

The Alignment Problem – Machine Learning and Human Value by Brian Christian (W.W. Norton & Company). 
This book gives an introduction to AI and covers in more detail some of the issues which broadly fall under 
the umbrella “Alignment”. 
 
How AI chatbots like ChatGPT or Bard work  -  A visual introduction to how LLM models work. (The Guardian) 
 
Visual guide to the Transformer - A visual introduction to how LLM models work. (Financial Times) 
 
A 1-hour talk introducing LLMs for a general audience, by Andrej Karpathy.
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