ol

I

s P . : ;
LA THT 7 : : .
- .-/‘: -. ..": r » . 4
_|;| . # .. I | { y .I t .. + ¥ :

Al-for-Education
4\ org e

ABOUT THIS
DOGUMENI

Artificial Intelligence can seem overwhelming, given the pace of the advancement and the
complexity of the methods used. We at Al-for-Education.org believe that while how Al works
is complex, the core principles of Al should be accessible to all - especially for those who

are using these tools to help children learn.

To help, we've developed this introduction to Al - which walks you through the main
definitions, main techniques, and the history of how we got where we are today. It's as non-
technical as possible in this field - but an important read for all of you who will build or use

Al tools in the future.

| GONTENTS

1. ARTIFIGIAL INTELLIGENGE: DEFINITIONS

2. MAGRINE LEARNING
3. A BRIEF HISTORY: FROM SIMPLE TASKS T0 GENERATIVE Al

4. LARGE-LANGUAGE-MODELS (LLM)

T T T L LT

ARTIFICIAL INTELLIGENCE (Al) is a broad discipline
which aims to build computational systems that can
perform complex tasks which typically require human

cognition. This includes things like understanding

languages, recognising pictures or patterns, solving
problems, predicting the future (forecasting), or
driving a car.

MACHINE LEARNING (ML) is a subset of Al. Machine
Learning involves algorithms which learn from data.

I]__|c, A[f@ﬁ?ﬁo@ﬁ@]ﬂ ﬂ[ﬁ]ﬁ@ﬂﬂﬁ@@[ﬁ]@@g If\f;);tewg;i.nt Al is based on the machine learning
DenItions

DEEP LEARNING is a subset of ML which uses a

To begin, we introduce some key terms, and how they particular class of algorithm: artificial neural networks.

relate to each other. We will expand on the definition

, , GENERATIVE Al refers to ML models that can produce
of these concepts in the next section.

new content: for example, images or text. Most
Generative Al is based on Deep Learning models.

ARTIFIGIAL INTELLIGENGE

A program that can sense, reason, act,
and adapt

MAGHINE LEARNING

Algorithms which learn patterns and
features from data [to perform a task]

DEEP LEARNING

A subset of machine learning
in which multilayered neural
nhetworks learn from vast
amounts of data

Figure 1: Definition and relationship of key terms.

Reproduced from https://en.wikipedia.org/wiki/Artificial_genera

2. Machine Learning

Machine Learning (ML) refers to a family of algorithms
which learn from data. There are three main families
of ML problems: reinforcement learning, supervised
learning, and unsupervised learning.

MACHINE LEARNING

REINFORGEMENT SUPERVISED UNSUPERVISED
LEARNING LEARNING LEARNING
Figure 2: Definition and
relationship of key terms.
GLASSIFIGATION ~ DIMENSIONALITY
REINFORCEMENT LEARNING is a type of ML which REGRESSION REDUGTION
models an agent learning by trial and error. The agent CLUSTERING

uses an algorithm to choose which action to take,
based on current observations of the environment.
The chosen actions have consequences, and the RL
model learns how to select their actions to maximize
some metric, called the reward. This might be points in
a game, or some other measure of how well the agent
is doing. The algorithm tries to find the optimum
trade-off between exploring (i.e. trying new actions) vs
exploiting actions that are known to do well. It is
important to keep in mind the particular reward that
the agent is optimising. If the reward is not well
calibrated to the behaviours researchers are looking
for, this can lead to the agent taking unexpected short
cuts, or behaving in a way that was not intended. For
example, when RL agents are applied to computer
games, they can often find glitches or bugs in the
game which they exploit to get a better score.

SUPERVISED LEARNING is about learning a mapping,
between examples of data and some associated
outcome or property. For example, for the problem of
face detection, the data points are individual
photographs, and the output is a label with two
values: a yes or no answer to the question “is there a
face in this picture?”. If the outcome has discrete
values like this face detection example, the problem is
called classification. In the outcome is a continuous
value then it is called regression. For example,
predicting a student’s final mark based on earlier

coursework and assessments would be a regression
problem. For both types of supervised learning, the
model is trained with example data items paired with
the desired output for each: i.e. a large set of
photographs together with labels with tell whether a
face is present or not. In supervised learning, the
supervision comes from the labelled training data set,
which tells the model what to do, by setting the
parameters. As we will see, the training data has a
huge influence on the behaviour of a model, so it is
important to understand this step.

UNSUPERVISED LEARNING is about learning
something about the structure of a large dataset,
without any explicit labels or output values to predict.
Two major sub-classes of unsupervised learning are
dimensionality reduction and clustering. Dimensionality
reduction is about describing a high-dimensional data
set in a simpler way. For example, representing each
data point with just a few numbers rather than
hundreds of thousands, in a way that preserves as
much of the important structure, such as the
relationships between different data points, as
possible. Clustering is about grouping objects (for
example photographs) in such a way that objects
within a group (or cluster) are more similar to each
other than they are to items in other groups.

This section unpacks the important parts of a ML model
from the supervised or unsupervised learning families.
Reinforcement learning algorithms work in a slightly
different framework which we won'’t cover here.

TRAINING —
DA.I.A raining

PARAMETERS

ALGORITHM

Model

A machine learning model consists of an algorithm,
together with some parameters. The algorithm
consists of a series of computational steps or
instructions on how to manipulate the incoming data
to achieve the chosen task. The parameters are values
that are used by the algorithm at different stages (for
example, an algorithmic step might say to multiply the
input data by a scaling factor, where the particular
value of the scaling factor is a parameter learned from
the data during training). In ML applications, the
algorithm is usually fixed while the parameters are
learned from the data in a process called training
(black arrow in Figure 3). It is important to understand
that the performance of a model is function of both
the algorithm and the parameters, and the
parameters come from the data used during training.

Usually, an ML model is developed so that it can be
applied to new data. If model performance (i.e. for the
face detection classifier, the proportion of correct
answers, called the accuracy) is evaluated on the
training data it is usually much higher than the

Deep learning refers to a particular family of machine
learning algorithms, mostly developed for supervised
learning problems. Deep learning models are multi-
layer artificial neural networks. We will explain now
what each of these terms means.

An artificial neural network (ANN) is a computer
system which is loosely inspired by biological nervous
systems. An ANN consists of many simple
computational units, called neurons, each of which
has several inputs and a single output. Each neuron
performs its own independent and relatively simple
computation: it adds up the inputs in a certain way
and uses the result to set its own output. Before
adding up the inputs it multiplies each of them with a

Figure 3: A machine learning
model consists of an algorithm,
together with some parameters.
The parameters are learned from
the training data. To test the ability
of the model to generalise it must
be applied to new data, that wasn't
used for training.

performance would be on new data. Because it is
being asked about a photograph it has already seen in
training, it can know the correct answer for this
specific example directly, for example by memorising
every photo in the training set, without having learned
a general process to solve the task (i.e. recognising
faces). The ability of a model to work successfully on
new data is called generalisation. We want models that
generalise to new data, and not models that just
memorise the training data. The phenomena where
models perform much better when evaluated on their
training data is called over-fitting. To meaningfully
evaluate model performance, it is very important that
the data used to test performance is completely
separate from the data used to train the model. When
new data is not immediately available this is achieved
with techniques like cross-validation. In cross-
validation, the available data is randomly split into two
parts, one part is used to train the model and the
second part is used to test the model. This allows
researchers to approximate the performance of the
model on new data.

weight, these weights are the parameters of the
algorithm which are learned from the data. The
pattern of how units are connected is called the
architecture of the network. Mostly by trial and error,
researchers have found that architectures which
involve multiple “layers” of units are the most
effective. There are different types of layers with
different structures that can be stacked together in
various combinations to build an effective ANN. We
will see some examples of this in the next sections.

Usually, once the architecture is decided the
performance of the network depends heavily on the
parameters: the weights which each neuron uses
when adding up its inputs. These parameters are

learned from data in the training step. This is done
with a technique called back-propagation. To start with,
random numbers are used for each weight. Then each
training example is run through the network, and the
final network output is compared to the desired true
value from the labelled training data set. The
difference between the true value and the network
prediction is called the error. Starting from the output,
the weights are then updated a small amount in a way
that reduces the error in the output for that example.
This is then repeated many times. Each training
example leads to only a tiny change in the weights of
the network, but over many repetitions of this process
the changes build up. Often the error is visualised
over the course of training, to understand more about
the process. But crucially, the generalisation
performance, which must be evaluated on separate
data not used for training, is more important than the
final error on the training examples.

Although each unit is relatively simple - taking
multiple inputs and processing them with a simple
function to obtain a single output - by combining

A

artificial neuron

weighted sum

multiple @ single
inputs ' output
activation
function

input image

227 x 277 X3 layer 2

convolution
27 x 27 x 256 units

11x11

layer 3

layer 1
convolution
55 x 55 x 96 units

convolution
13 x 13 x 384 units

13 X 13 x 384 units

these in huge numbers the resulting networks are
very powerful. They also have very large numbers of
parameters (there are many more connections
between neurons than there are neurons, and each
connection has a weight parameter). For example, as
we will see below, Large Language Models (LLMs) are
often characterised and described in terms of the
number of parameters they have, which is measured
in the billions, tens of billions or even hundreds of
billions. To give a sense of scale, 100 billion seconds
(roughly the number of parameters in OpenAl’s
ChatGPT) corresponds to 3000 years. Learning these
parameters requires huge amounts of training data
and is very computationally intensive. The key word
here is scale. While the theory of ANNs was first
developed in 1950s and 60s, it is the increased scale
provided by technological developments in the 21st
century that has unlocked successful practical
applications. This is both because of the increasing
speed of computers, but also the cost and availability
of digital storage, and crucially the availability of huge
guantities of data in digital form (for example digitised
text from books, and images from digital cameras).

layers 6 & 7
fully connected
layer 4 4096 units

convolution

I EEZ e

3x3 ﬂ_-‘.. 3w =1

layer 5
convolution
13 x 13 x 256 units

layer 8

fully connected
1000 units

Figure 4: Artificial Neural Networks consist of many interconnected units or neurons, arranged in layers. A: Each neuron has many
inputs from neurons in an earlier layer. These inputs are summed with the learned weights (indicated by lines of different thickness)
and the sum is passed through a non-linear activation function to compute a single output value which is sent on to other neurons.

B: Neurons are often arranged in layers, with different stereotyped structures.

ere, two fully connected layers are shown. Fully

connected means every neuron in layer 1 has a connection from every input, and every neuron in layer 2 has a connection from every
neuron in layer 1. The connections of the first neuron in layer 1 are highlighted. C: A deep learning model typically consists of multiple
layers stacked together. This panel shows the architecture of AlexNet, a network with 8 layers containing 650,000 neurons in total. It
has 62 million learnable parameters (weights). AlexNet was winner, by some margin, of the 2012 ImageNet competition, which
kickstarted a resurgence of interest in deep learning methods (see Section 3.2.2). Panel C modified from Hemmer et al. (2018)

d0i:10.3390/designs2040056

DEEP LEARNERS VS GAMERS, A FIGHT FOR RESOURGES

As we have seen, Deep Networks consist of huge numbers of relatively simple computational
building blocks. This means, the output for each neuron can be computed somewhat
independently of the others. Computer games, which render the visual image of a 3D scenein a
game as the player moves around the game world, also have this form of parallel computational
problem. For games, the appearance of each pixel on the screen can be calculated somewhat
independently of the other pixels.

Driven by the increasing market for computer games, specialist hardware was developed to
improve performance for these tasks, by companies like NVidia and AMD. Since these were
developed for computer game graphics, they were called Graphics Processing Units or GPUs.
However, because they are designed to run many simple calculations in parallel, they are also
very efficient for training and running deep learning networks.

The rapid growth of machine learning and the popularity of deep networks caused huge demand
for these devices, and suppliers could not keep up. Cryptocurrencies are another area that also
provides strong demand for GPUs, as they can also perform the computational work needed to
operate blockchains in an efficient way. This led to increase in prices and disruption to supply
chains and meant many gamers were unable to keep up with the latest technology.

To address this and support their original core customers, some manufacturers sell different
versions of their GPUs, trying to reduce how attractive they are for different areas. For example,
some cards automatically slow down if they detect a lot of crypto-currency calculations, other
cards have strict licensing terms forbidding their use in computational workstations without a
display attached (so they can only be used for playing video games on a display and not for deep
learning in a computer cluster).

These shortages have implications for those of us building for more charitable use cases where
the commercial returns may not be as lucrative.

EXPLAINABLE Al

Deep learning models are often termed a black box. This is because it is very difficult to look
inside them and understand how they work. This might sound strange when they are
implemented in a computer, and we know every multiplication and addition that is performed.

But the enormous scale means this does not really help us understand what is going on. It is
difficult to describe the computational steps in a way that gives understanding of what specific
features of the input data are leading to the decision, and in what way. This can lead to bias or
side-effects, when the model learns to perform the task in ways that are not expected.

One example of this is a deep learning model that was trained to identify pictures of horses.
Because of a quirk of the training data set, most of the photos of horses were commercial
pictures from horse riding events which carried watermarks. Photos of other categories in this
data set tended not to have this. So, the network had not actually learned about horses as we
recognise them, but instead was using an unexpected feature of the photographs that humans

would typically ignore.

Explainable Al (XAl) is a subfield of Al in which researchers are trying to better characterise and
understand how Deep Learning, and other Al models work. This considers not just accuracy, but
also fairness. For example, when Al systems are making decisions with important real-life
consequences it is important to understand how they work to ensure they are acting in an
acceptable way. A system used in parole hearings to predict reoffending should not be making
decisions based on any protected characteristics, such as race.

Images used as input for a model trained to detect horses, next to the corresponding relevance map which shows
which parts of the image were most strongly influencing the models’ responses.

A shows an image containing a copyright watermark, causing a strong response in the model. In B, the watermark
has been edited out. The artificially created images C and D show a sports car on a lush green meadow with and
without an added copyright watermark. In samples A and C the presence of class “horse” is detected, whereas in
samples B and D this is not the case.

8, A brief histery: from
simple tasks te generative
Al

As deep learning models became larger and more
powerful, they developed detailed internal
representations of the type of data they were trained
on. This means they can be used to generate new
examples of that type of data. For example, creating
images from scratch (e.g. text to image), or producing
long segments of meaningful text to answer questions
(e.g. chatbot assistants). The development of
generative Al technologies has been particularly rapid
in recent years. A key turning point for these systems
was when the outputs started to become difficult to
identify as Al generated. Today, it is not easy (and
sometimes impossible) to recognise that outputs of a
generative Al system are not real photographs taken
by, digital art composed by, or text written by humans.
Because the results are available for everyone to see
and are relatively easy to interpret (compared to
numerical measures like classification accuracy
scores), generative Al has boosted excitement about
and interest in the field.

In this section we will illustrate the historical
development of these capabilities with some selective
examples. Just as the parameters and the behaviour
of Al models are closely tied to the datasets that they
were trained on, so the history of Al progress can be
traced through the development of certain landmark
datasets for specific problems. Because of this link
between model, training data and performance,
shared data sets provided an important way for
researchers working in the field to objectively
compare different approaches - an open data set
described a difficult but constrained problem.
Organised competitions (with private test data
withheld by the organisers to prevent cheating)
allowed different groups to test their ideas, and this
allowed the field to rapidly discover the most
promising approaches. By reviewing some of these
key landmark datasets and the developments they
enabled, we aim to give a historical overview of the
development of modern generative Al systems,
focusing on the domains of images and language. As
well as showing the history of the development of the
algorithmic techniques, these datasets also show how
the problems tackled changed from well-defined
classification tasks (e.g. recognising hand-written

digits), to modern open-ended generative Al (e.g.
image generation). This is intended to be a high-level
historical introduction rather than a comprehensive or
complete history. For more detailed and
comprehensive materials, see Resources.

1994
MNIST

1995
LeNet-5; 2010: ImageNet competition
launched

1997
Deep Blue beats grandmaster at chess

2012
AlexNet wins ImageNet

2013
Google Word2Vec

2014
A chatbot called Eugene Goostman
passes the Turing test

2015
Style transfer

2015
Image captioning (Stanford)

2015
AlphaGo beats master

june 2017
Transformer architecture paper from
Google

Jan 2021
Dall-E 1

July 2022
Midjourney beta release

Nov 2022
ChatGPT released

Feb 2023
Llama-2 released

Figure 5: Timeline of Al
developments discussed here.

3.2.1 MNIST: REGOGNISING HANDWRITTEN DIGITS

Long before he became the head of Al research at
Meta (formerly Facebook), Yann LeCun was working at
NYU when, in 1994, he was part of a team that created
one of the most influential datasets in the history of
machine learning. The problem he was working on
was identifying hand-written numerical digits, a subset
of optical character recognition (OCR). This is an
example of the kind of task that is easy for people to
do (in most cases!) but was hard to program
computers to do with a fixed set of rules, because of
the range of different handwriting styles.

The MNIST dataset consists of 70,000 images of
handwritten numbers (60,000 for training and 10,000
for testing). Each of these images has been labelled by
humans annotating the digit displayed. While this was
an interesting theoretical problem because of the
constrained nature of the data (only 10 output
classes), it was also an important practical problem for
the automated sorting of mail. In the US postal
system, every address has a numeric postal code.

Being able to automatically read the 5-digit
handwritten postal code would allow machines to
automatically sort mail, even if they couldn’t read the
rest of a handwritten address. Another application of
digit recognition is automatic processing of
handwritten cheques (widely used before the advent
of credit cards and bank transfers).

000 0000Qa@pPpOOOCYL 0 OO
(VY NV 2 020 1N/
2422232222222 22%2
333333335>3333333
H g ¢d a9 Yye ¢vdd4y ¢y
555855 SS55T<s58555S
666 bLebbbodéébt el
T 797777 TOIN V2P 7 77
Yy 3 8 8P T RPITTY S T I
$99999%949%4994419 9

Figure 6: Example images from the MNIST dataset. While
these figures are easy for us to read, the natural variations
in handwriting make it a difficult task for a rules-based
computer vision system.

Source: https://en.wikipedia.org/wiki/MNIST _database

Today this is considered a relatively simple problem,
which is often used as a tutorial exercise. Models can
be trained to achieve excellent performance on this
dataset with a modern laptop computer, with only a
few lines of code using open-source deep learning
software libraries. However, in the 1990's it provided a
ground-breaking benchmark problem, pushing the
limits of the computational resources of the time.

It was one of the first examples where multi-layer
neural networks (aka Deep Learning) achieved state of
the art performance. In 1995 Yann LeCun developed a
model called LeNet-5. The performance of this model
on the MNIST classification problem surpassed all
other computer vision models of the time. LeNet-5
consisted of 7 layers. The first five layers alternated
between convolution layers, which look for a fixed
pattern anywhere in the image, and pooling layers,
which combine the outputs of the previous layer in
different parts of the image.

After this there was a dense or fully-connected layer.
While convolution and pooling layers impose a
particular structure in the form of which units are
connected, in a dense layer every neuron is connected
to every neuron in the layer before and in the layer
after. This pattern of alternation of convolution and
pooling, followed by dense connection was highly
influential, and became a key motif that was widely
used in many deep learning computer vision models
(see Figure 7, AlexNet which we introduce next).

3.2.2 IMAGENET: RECOGNISING OBJEGTS

Figure 7: Example images for two different labels. These
natural images have a broad range of variation in position,
lighting and the specific example (i.e. different breeds of
dog) compared to the more constrained digit images in
MNIST. Example images are shown here for two categories,
but ImageNet features over 20,000 categories in total.

Models trained on the MNIST dataset hinted at the
growing superiority of multi-layer ANNs for computer
vision, but it was a second landmark dataset released
15 years later in 2010 that accelerated this new
paradigm - the ImageNet dataset. ImageNet was a
project to map (again, with human labour) thousands
of words to millions of images found on the internet.
By combining these two aspects of human cognition -
language and vision - at such a large scale, ImageNet
was able to push Al research in a direction that was
not previously possible. In 2010 a competition was
launched to find the best model for categorising
objects from images. The competition dataset
included 1.3 million training images of objects from
1000 categories. This was a challenging task, even for
humans, due to the diversity of images and
categories. Humans have an error of around 5% (out
of every 100 images they get around 5 wrong). Until
2012 the best performing models had error rates
between 25 and 30%, some way below human
performance. In 2012 a new model provided a step-
change improvement, reducing the error rate to
around 15%, nearly 10% better than the next model.
This model was called AlexNet, developed by Alex
Krizhevsky, a PhD student working with Geoff Hinton
at the University of Toronto. AlexNet is a deep
convolutional neural network, with a similar design to
LeNet-5 described above, but with 8 layers rather than
/. While each layer was much larger (had more
neurons), the model used the same motif of interlaced

convolution and pooling layers, finished with dense
interconnected layers (see Figure 4). AlexNet had
650,000 neurons, with 62 million learnable
parameters in total. The success of AlexNet
kickstarted a resurgence of interest in ANNSs. Since
2012, every winner of the ImageNet competition has
been an ANN model. In 2015 an ANN called ResNet
with 152 layers won the challenge with an error rate of
4% - finally beating human performance on this task.
ResNet-152 has a similar number of parameters as
AlexNet - around 60 million - but requires
approximately 10 times more computer time to train.

ImageNet, like MNIST, defines a supervised
classification problem. However, while MNIST had just
10 possible output classes, with ImageNet that
increased to 1000 possible categories. Another major
difference between the data sets is the fact that
ImageNet uses unconstrained natural photos. The
images are not cropped and centred on the object of
interest, and there can be multiple objects in each
image (two boats, or a dog and a fish, in the examples
shown in Figure 7). This seems like a trivial extension
for humans doing the task, but presents real
challenges for computer vision. The human visual
system is well known to be robust to the sorts of
natural variations we experience every day in aspects
like brightness, lighting (morning vs evening), location
of an object, and so on. For computer vision systems,
which need to follow the fixed set of steps from an
algorithm to get the answer from a given image,
dealing with these variations is much more
challenging.

Although the foundational ideas for the field of deep
learning were proposed in the 1960s, the lack of early
practical successes led to them falling out of favour.
By the ‘90s only a few groups of researchers were
working in the area, which was considered a niche
theoretical topic. However, with the increasing
availability of compute power and digital data from
the turn of the century, deep learning went from
strength to strength and is now the basis of most
current generative Al. The dominance of AlexNet in
2012 can be seen as something of a turning point,
which led to renewed interest in the deep learning
approach, which was then widely adopted for many
applications. In fact, after 2012 deep learning models
quickly surpassed existing state-of-the-art approaches
in a wide range of problems, for computer vision
(image segmentation, self-driving cars), speech (e.g.
automatic speech recognition), and as we will see
next, language.

It's hard to pin-point exactly when people first had the
idea of using machines to understand and produce
natural language, but some of the most important
early advances relevant to modern Al came from
researchers and engineers working on telephone
communication in the 1950s, in particular the work of
Claude Shannon at Bell Labs. Shannon's idea was that
an expression in a language could be understood as a
chain of symbols, also known as tokens, taken from a
fixed set, or vocabulary, which each have a certain
chance of appearing at each point in the chain,
depending on the tokens which appeared before
them. A token could be a single letter, a whole word,
or something in between.

At that time, and up until very recently, it was not
possible to accurately calculate the probability of
tokens appearing in sequences long enough to be
useful for understanding human communication (e.g.
whole sentences). Approaches based on this principle
focused on smaller chains of tokens, known as n-
grams. A 1-gram is a single token taken in isolation -
for example if the tokens are words, then a 1-gram
count is simply a count of the number of times each
word appears in a piece of text. A 2-gram, or bi-gram,
IS a pair of tokens appearing next to each otherin a
chain - for example “hello there” and “car wash” are
possible word 2-grams that might appear in an English
text.

Because they were limited to short chains of tokens,
approaches that used these ideas were not capable of
understanding or producing text in the way that
humans can. They focused instead on simpler tasks,
such as classitying or extracting the general theme of

A
man walked
o ®
- e O i
hE walking O
® queen
” gfff’#ff##r_ @, e
swimming
Male-Female Verb tense

documents or sections of text. The basic idea of these
approaches is to consider each n-gram separately, and
just count the number of times it occurs in a
document, ignoring anything about where in the
document occurs, or that it tends to be next to, before
or after. When applied to 1-grams, such approaches
are known as “bag-of-words” models (so-named
because they do not capture any information about
the order of words in the text, instead they are like
throwing all the words from a document into a bag
and shaking it up). These sorts of models could be
used for tasks like sentiment analysis (counting how
many positive words vs negative words were in a
document), or topic modelling (finding common
themes based on combinations of words that tend to
appear together over a set of documents).

Mirroring the development of image models, multi-
layer ANNs made for rapid advances in natural
language processing, particularly through the
possibility for distributed representations of words.
Instead of each word or token being assigned a single
numerical probability as in the bag-of-words models,
ANNSs like Google’s Word2Vec in 2013 introduced
models that map each individual word or token onto
thousands of different numerical values, or vectors.
These vectors, also known as word embeddings (or
token embeddings if the input tokens are not whole
words), served as a kind of “fingerprint” for each word,
but more importantly they also displayed certain
intuitive behaviour when combined, which showed
they quantified something about what the words
mean. For example, the vector for the word ‘Paris’
minus the vector for the word ‘France’ plus the vector
for the word ‘Italy’ gives the vector for the word
‘Rome’. That is, they represent something meaningful
about the semantics of words.

Spain -HH‘““““ﬁmﬂﬁgﬁmxhk
Italy *Hx%HH‘EH‘%H‘EHH‘ ~~ Madrid

Turkey ‘ﬁuﬂhﬁﬁ‘“‘ﬁ=~_H$H‘_
Ankara

Russia —

Moscow

Canaada Ottawa

Japan

- Tokyo

Vietnam

Hanoi
Beijing

China

Country-Capital

Figure 8: Schematic showing word embeddings for the words ‘king’, ‘queen’,’ man’ and ‘woman’. Note that the
relationship (i.e. the difference) between ‘king’ and ‘queen’ is similar (same length and same direction) as the
difference between ‘man’ and ‘woman’ (red arrows). So ‘king’ + ‘woman’ - ‘man’ = ‘queen’. The representation captures
that the relationship between king:man is the same as the relationship between queen:woman. Only two dimensions
are shown here in this cartoon schematic. Typical word2vec embeddings have hundreds of dimensions.

Here, we continue our brief history with examples of
models that make the leap from supervised learning
towards modern generative Al, as you will see from
the open-ended output of the models. As we get to
the more recent impressive applications of generative
Al, the distinction between text and image data and
models becomes blurred, as modern generative-Al
models span these domains. Generative Al involves
the development of such large models that they
contain representations of a huge range of concepts
we observe in the world. To make sense of this, the
most advanced image models also use models and
representations built from text, and the latest
generation of large-language-models are inherently
multimodal, able to process images as part of their
input prompts, and produce images alongside text in
their outputs.

In the previous section we considered early
developments in the domains of images and language
separately. For images, we saw how benchmark
datasets expanded from the constrained and relatively
well-defined problem of digit recognition with MNIST,
to the more difficult and larger-scale problem of
recognising everyday objects in natural scenes. NLP
methods were also historically developed separately
from the relatively specific field of computer vision.
They developed from simple sentiment analysis based
on bag-of-words (i.e. how many negative vs positive
words are in a document), to capture meaningful
semantic relationships in high-dimensional word
embeddings like word2vec.

3.4.1 STYLE TRANSFER: IMAGES AS INPUTS,
IMAGES AS OUTPUT

One of the earliest examples of generative Al for
images which gained wide attention is what was
termed “style transfer”. By manipulating the
activations of different layers of the network to two
different images, researchers were able to create an
output that combined them in a particular way. The
subject or content of the output image came from one
image, but the style (for example, the characteristic
style of van Gogh'’s oil paintings) came from the other.
Contrast this with the ImageNet labelling task.
Reporting the objects in each image is a simpler
output, with a clear correct answer.

In style transfer, a new image is produced as the
combination of a content image and a style image.
The output is a new image, without a correct answer.
There are many possible ways to recreate the first
content image with the style of the second, and the
evaluation of which might be better is a subjective
judgement. This illustrates the transition to generative

Al. The evaluation of style transfer images is Figure 9: Examples of Style Transfer. Panel A shows the source
subjective, and the output is something that it is not image: a photograph of a river scene. Panels B-F show the
easy to recognise as “computer generated”. results of style transfer for different donor style images (inset).

Reproduced from Gatys, Ecker & Bethge (2015) “A Neural
Algorithm of Artistic Style”
https://arxiv.org/abs/1508.06576

J.4.2 IMAGE GAPTIONING: IMAGES AS INPUT,
SENTENGES AS OUTPUT

We have seen how ImageNet provided a dataset for
evaluating visual object categorisation. This was
extended to the more open-ended problem of image
captioning. This goes beyond identifying the category
of a single object in a photograph, and instead
involves generating a semantic description of what is
happening in the scene. This is another example of
the shift to generative Al. While style-transfer
produces new images as output, here we have written
sentences as the output. Unlike the predefined
categories of ImageNet, the output now is a full
sentence, which can include any words in any
combination to describe the image. In 2015 a
landmark deep network model developed at Stanford
by Fei-Fei Li, achieved another step-change in
performance compared to previous efforts.

“MAN IN BLAGK SHIRT
S PLAYING GUITAR. ™

“GONSTRUCTION WORKER IN ORANGE
SAFETY VEST IS WORKING ON ROAD."

“TW0 YOUNG GIRLS ARE
PLAYING WITH LEGO TOY."

Figure 10: Examples of image captioning. Reproduced from Karpathy & Fei-Fei
(2015) “Deep Visual-Semantic Alignments for Generating Image Descriptions”
https.//cs.stanford.edu/people/karpathy/deepimagesent/

3.4.3 TEXT-TO-IMAGE: TEXT AS INPUT. This allows the creation of fantastical images (for

example, a snake made of corn, a cat riding a horse)

|MAGES AS UUTPUT which are impressively realistic. These systems have
an encyclopaedic knowledge of the visual world and

Current systems allow generation of full, photo- can produce realistic images of a huge range of

realistic images from text prompts. Systems providing concepts, in any visual style (photo-realistic,

this functionality include DALL-E, Midjourney and illustration, manga, line drawing, woodcut print etc.).

Adobe Firefly.

“An aerial drone shot of the breathtaking "A macro wildlite photo of a green frog in a
landscape of the Bora Bora islands, with rainforest pond, highly detailed, eye-level shot”

sparkling waters under the sun”

“Simple flat vector illustration of a woman sitting "A bedroom with large windows and modern
at the desk with her laptop with a puppy, furniture, grey and gold, luxurious, mid century
isolated on white background” modern style”

Figure 11: Example images generated from four different commercial models using the same
prompt. The four models use for each example are: Meta Al, Adobe Firefly, Midjourney and OpenAl’s
DALL-E. Images generated by Chase Lean https://twitter.com/chaseleant;

J3.4.4 Al ART: GOMBINING IMAGE AND
PROMPTS AS INPUT

There are image models that allow image generation
with a text prompt, while also being constrained by an
input image. This works best when the input image is
high contrast (e.g. a black and white checkerboard).

Figure 12: An example of “Al Art”. These images were generated from a black and white image
(checkerboard or spiral) together with the prompt “Medieval village scene with busy streets and
castle in the distance”. Images generated by https://twitter.com/MrUgleh/

4}, Large-Language-Mocaels
(LLMs

An important class of model, called Large Language
Models (LLMs) supercharged methods for language in
recent years. This is the type of model behind chatbot
Al assistants, like the famous ChatGPT from OpenAl.

The step-change in the ability of these models
interpret and produce naturalistic language compared
to what went before has driven much of the current Al
excitement. Because of the importance of these types
of models, here we provide a bit more detail about
them. We aim to provide a high-level overview of the
main stages involved in developing the models, and
how they can be refined for different tasks.

A large language model (LLM) is a deep learning
model. They were initially developed to work with text,
although this boundary is dissolving as the latest
models are genuinely multimodal, trained on both text
and images. Here we focus on text based LLMs. As
described above for supervised learning models, first
an LLM must be trained, and following that it can be
used. For LLMSs the training process is composed of
several stages, which we outline below. Each of these
stages adjust the learnable parameters of the model.

OPEN VS GLOSED LLMS

Once trained, applying a model to generate text is
called inference. This is analogous to the testing step in
supervising learning. In a classification model, the
testing step would typically involve evaluating the
performance of the classifier on new data. Here as the
task of generating new text is open ended, so as with
the image generation models like style transfer, there
IS no single right answer.

To use an LLM to generate text requires two
components, the set of learned weights (measured in
billions of parameters, usually 10’s or 100’s of billions),
and some code which implements the architecture of
the model to apply the weights to input data. In this
case, because the outputs are so open ended, the
input data are called prompts because of the way they
invite the model to respond. Inference requires both
high computational performance (i.e. GPUs) but also a
lot of memory to hold the billions of weights of the
model. Currently GPUs available with large amounts
of memory to support LLM inference remain very
expensive. There is also limited available because of
high demand leading to a very competitive market
with long wait times. The cost and availability of high-
end GPUs is the main barrier to developing a new
LLM.

Most inference is performed online in data centres (often termed the cloud) as a commercial
service. In this case, the model architecture and the values of the weights can be kept private.
Providers such as OpenAl and Midjourney work in this way. For example, users can pay a monthly
subscription to OpenAl to access ChatGPT, or software developers can programmatically access

these services from their own applications or websites, paying a small fee for each prompt sent.
These are usually charged per-token, both for the prompt provided and the response generated.

However, there is also increasing interest in the ability to run inference on self-owned computer
hardware - this is called local models or local LLMs, because the models are run close to the user
(i.e. on their own computer), rather than further away from them (in the cloud). As described
above, to run inference for a model requires access to the weights, as well as computer code to
implement the architecture of the model. Some companies, such as Meta and French start-up
Mistral, release these weights publicly for anyone to use. These models are called open models.
However, even for open models typically neither access to the training data or full details of the
training process are provided, and sometimes the weights are licensed in a way that restricts
commercial use of the model.

The process of training a LLM is much more involved
and computationally intensive than applying the
model for inference. Here we outline the basic steps. It
is useful to know these key stages to understand how
models can be adapted to specific applications and
contexts.

Current LLMs are based on an architecture called
transformers. As with the word embedding models
described earlier, this first involves calculating a high-
dimensional numerical representation of each word or
token, based on the words it occurs near to in the
training corpus. However, in contrast to earlier word
embedding models like word2vec, transformer
models process a whole sequence of tokens at the
same time: whether that is a sentence or even a
longer paragraph. A key feature of this architecture is
attention. This is a mechanism which adaptively selects
the other words in the sequence that are likely to be
most related to the currently considered token. This
helps them to disambiguate semantic differences
based on the context given by the sentence or
paragraph, just as human readers do. There are three
main steps involved in training a LLM as a chatbot
assistant.

FOUNDATION MODELS: PRE-TRAINING

The first step in training an LLM is called pre-training.
In fact, the P in ChatGPT comes from the term pre-
training: GPT is short for Generative Pre-trained
Transformer. We have covered what a generative
model is, and the basics of the transformer
architecture. Here we describe pre-training, the other
crucial step.

Pre-training is a training procedure that runs
iteratively using a huge dataset of text. For example,
all the text on the internet. This is messy data, not
curated or systematised in any way, just a huge
amount of text. The training procedure is like
supervised learning introduced previously. The
training objective is to take a sequence of tokens
(words) from the data set and predict the next token
in the sequence. This is called self-supervised learning,
because there are no external labels required (as for
categorisation). The model can find the ‘correct’
answer itself from the data. The model supervises
itself, hence self-supervised. This training procedure
runs for a long time, resampling different fragments of
text from the full training set, each time slightly
updating the weights to get closer to the correct next
word. Although this seems simple, it is extremely
powerful. To predict the next word in a complicated

paragraph, requires some representation of the key
semantic concepts of the paragraph and how they
relate to each other. In very large models, this simple
objective can drive meaningful learning of complex
semantic representations. In effect, this pre-training
procedure compresses the training data. For Meta’s
Llama-2 model, which was one of the first widely used
open LLMs, the pre-training step used around 10TB
text from the internet. TB denotes a terabyte, which is
1024 GB. This is compressed by around a factor of 100
into the 70 billion numerical weights of the largest
version of the model. This pre-training runs on
clusters of thousands of GPUs for months, and costs
millions of dollars.

After pre-training, a raw foundation model has
learned a lot about the structure of the world
represented in the training data and can do well at
predicting sequences of text that look like documents
from the internet. These generated documents might
not be real: in effect the model “dreams” internet
documents, producing documents according to the
patterns it has learned, producing outputs that mimic
examples from the training data. Such foundation
models are not directly useful for end user interaction,
because the outputs can often be boring, repetitive or
irrelevant. However, the power of the representations
they have learned can be harnessed with additional
training steps.

CUSTOMISING THE MODEL: FINE-TUNING

To enable the model to answer questions in an
interpretable and useful way, it is necessary to
develop an assistant interface, often called a chatbot.
This is an LLM that can give useful answers to the
guestions it is asked, interacting with the userin a
productive and understandable way. This is achieved
by subjecting a foundation model to a second training
stage, called fine-tuning. Fine-tuning be used to teach
the model a specific output style, to make a more
specialised and useful model.

Rather than the huge dump of internet documents
used in step one, here a completely different training
set is used. This is much smaller, and highly curated,
often created from scratch with carefully instructed
human labour. For example, to create a chatbot,
human workers write example questions, together
with well researched and helpful answers. For
example, the Llama model fine tuning used around
100,000 carefully curated assistant style question and
answer pairs. The foundation model is then trained
again on these documents, so that it learns how to
produce output primarily in this style: the style of a
helpful assistant. However, it can still use the semantic

knowledge and representations it learned from the
internet data. Crucially, fine-tuning is much less
computationally expensive that pre-training: obtaining
the carefully curated training data can be the major
expense in this step.

REINFORCEMENT LEARNING WITH HUMAN
FEEDBACK (RLHF)

As noted above, obtaining or creating the carefully
curated examples needed for fine-tuning can be
difficult and time consuming, requiring a lot of human
labour. On the other hand, comparing or ranking two
answers generated by the model is a more passive
task that can be done more quickly and easily by
human raters. In this stage of tuning, multiple
different answers are generated by the model. The
models are inherently probabilistic, so when the
inference procedure is repeated a different answer is
generated, even if the prompt is the same. In a
technique called Reinforcement Learning with Human
Feedback (RLHF), humans rate multiple outputs to a
given question, and select the best one. This is then
fed back to update the weights of the model, as for
the other training stages.

ChatGPT 4

B You

Write a sonnet in the style of shakespeare about how
generative Al might be applied for educational applications in
low and middle income countries.

| ChatGPT

When silicon minds awake to brighten day,
In lands where books are scarce, yet dreams run deep,
There Al's gentle hand doth pave the way,

For knowledge's seeds in eager minds to keep.

In classrooms wide, where teachers are but few,
And resources thin, like morning mist,
These artificial minds bring visions new,

A scholar's touch in every algorithm's twist.

With language universal, they impart,
Lessons tallored to each learner's need,
Bridging gaps that keep young minds apart,

Sowing in their souls, enlightenment’s seed.

In low and middle lands of modest means,

Al's light doth shine, in education’'s dreams.

! | l .‘_ _'|

— [——

B You

Write a haiku about educational applications of Al

@ ChatGPT

Al's gentle glow,
Knowledae blooms in minds aglow,

Future seeds we sow.

< 2/2> DO @ O

Figure 13: Some example outputs from OpenAl’'s ChatGPT.

LLMSs are instructed with natural language prose
rather than computer programming code. Their
behaviour can be tweaked from essay-length prompts
which try to suggest a particular behaviour, for
example responding in a certain style and focussing
on certain topics. This opens a whole new paradigm
for human computer interaction. The nascent field
around this is called prompt engineering. Careful use of
prompting can enhance the abilities of an LLM to solve
problems. Even relatively simple additions to a prompt
like “explain your answer step by step”, can enhance
the problem-solving capabilities of a chatbot.

In-context learning refers to the ability of LLMs to learn
new tasks or solve problems based just on what is in
the query context (the context is the combined inputs
to the model, which can be a combination of the
guery, system prompt and chat history). For example,
models can learn by example. If the prompt contains
some examples of a specific task such as summarising
text in a certain format, extracting dates from a
paragraph, summarising the sentiment of a series of
tweets, or some other task, the model can learn from
this, as a person would. Often just a few examples are
enough for the model to see how to perform that task
on new data, and it doesn't require a full
computational specification of the task.

Another key area by which the applications of LLMs
are advancing is through combing a core LLM model
with other components to form compound Al systems.
One example of this is tool use, which provides
additional functionality to a language model through
functions that the model can call as part of its output.
For example, OpenAl’'s ChatGPT has tools for browsing
the internet and for executing Python code in an
interpreter. ChatGPT knows these tools are available

and how to use them, which greatly enhances the Another family of compound Al systems are termed
types of questions it can answer. If a user asks Retrieval Augmented Generation (RAG). These systems
ChatGPT for the time of high tide, it does not have give the LLM access to a prespecified set of data, for
access to this from the training data. Instead, it will example a collection of documents on a special topic.
use the browsing tool to perform a search using an In broad strokes, these systems work alongside the
internet search engine, scan some of the results, just LLM by finding the parts of documents in the library

as a human internet user would, and extract the which are most relevant to the user’s query, and

information requested. making sure those are provided in the context of the
model so it can formulate accurate answers. This
allows the LLM to function as a factually accurate
natural language search engine for a specific data set.

4.9 GAVEATS

Some caution is required about applications of LLMs. No one really understands in detail how
they work: they are in some sense closer to discovered artefacts than typically engineered
systems where each step of operation is understood. Even the experts who built them don't fully
understand how they produce any given response, and often their behaviour can be surprising
and unexpected. One major problem is outputs that have been called hallucinations - while
perfect language is produced, the facts or relationships reported are not always correct, and it is
hard to identify this without existing expert knowledge. They can also exhibit signs of bias or
negative stereotyping, and they can sometimes produce offensive or dangerous output. Most
companies developing such models have dedicated teams thinking about these problems, often
termed Responsible Al.

Most user-facing chatbot applications have what is called a system prompt, which is invisible to the
end user, but is applied to every interaction with the model. This is a long natural language
description of the type of response the model should and should not produce. For example, it
might include the instruction “Don’t swear in your response, no matter what the user requests.
When quoting text from other sources remove any rude words". For the big public models there is
a constant back and forth between curious users, some of which may be genuine bad actors, and
the engineers working on the system. When users find a way to get the model to respond outside
of the intended parameters, this is often called a jailbreak. Early jailbreaks used techniques to trick
the model into producing illicit content such as instructions on how to perform an illegal activity.
By asking for the response in a code block, or through increasing byzantine series of instructions
such as asking the model to write a Python program that prints out the illicit content, some of the
early safeguards put in place could be subverted.

The amazing performance of LLMs effectively renders computer representation of language a
solved problem. This landmark has been achieved much sooner than many people expected, due
to the unexpected and not yet fully understood behaviour that emerged from these large deep
network models trained on next token prediction. It's likely that LLMs will expand into many areas
of software, providing a natural language interface to complex functionality that would otherwise
require detailed technical expertise. The field is now moving extremely fast, with significant
improvements being made on a weekly basis.

19

5, Conclusion

Here we have provided a non-technical introduction to
the field of generative Al. Our intention was to provide
a high-level overview, which introduces and defines
some key terminology, while also providing some
historical context of how the field has developed.
Historically, image models were developed separately
from language models, but this distinction is
disappearing as the next general of large models are
multimodal, including text, image and even video. This
historical overview is intended to be an introductory
beginners guide rather than a comprehensive
reference and so covers only a few examples.

This new generative Al technology is undoubtably
going to change the world, potentially having a
similarly large impact on society globally as other
major technological shifts such as the printing press,
personal computers, the internet, and mobile phones.
The impact of Al technologies is also likely to be more
rapid than previous shifts and might be measured in
years rather than decades. Development in this area
continues at a dizzying pace and it’s likely that there
will be dramatic improvements in model algorithms,
hardware, training data, compound Al systems and
practical applications in the coming months and years.
Nonetheless, whatever the developments of the

future we think it is important to understand some of
the history that led us there.

The Alignment Problem - Machine Learning and Human Value by Brian Christian (W.W. Norton & Company).
This book gives an introduction to Al and covers in more detail some of the issues which broadly fall under

the umbrella “Alignment”.

How Al chatbots like ChatGPT or Bard work - A visual introduction to how LLM models work. (The Guardian)

Visual guide to the Transformer - A visual introduction to how LLM models work. (Financial Times)

A 1-hour talk introducing LLMSs for a general audience, by Andrej Karpathy.

ARTIFIGIAL INTELLIGENGE DISTRIBUTED REPRESENTATION
< it STYLE TRANSFER
Generative Al
Artifi;ial General Intelligence IMAGE GAPTIONING
Explainable Al
el LARGE LANGUAGE MODELS
TURING TEST Token
Word embgddlng
REINFORCEMENT LEARNING > R sl
Reward Local LLM
Exploration vs exploitation Inference
Cloud
SUPERVISED LEARNING g enen mec
Classification Transformer
Regression Fine-tuning
Reinforcement Learning via Human Feedback
UNSUPERVISED LEARNING Chatbot
Dimensionality Reduction ﬁ\lsasl;tsjtc?getation
Clustering Bigses
OPTICAL CHARACTER RECOGNITION SEEE ATy
Tool use
Ml_ MUDEL Retrieval Augmented Generation (RAG)
o bl AUTOMATIC SPEECH RECOGNITION
o SPEECH SYNTHESIS
Generalisation
Overfitting MACHINE-READABLE
Cross-validation
DEEP LEARNING
Artificial Neural Network
Weights
Layer
- Fully-connected / Dense
- Convolutional
- Pooling
Architecture
Error
Back-propagation
OO .
@ DS Al-tor-Education
This work is licensed o OTg

under CC BY-SA 4.0

